2102240076

Reg.No	
Signature.	

[Time : 3 hours]

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE – APRIL - 2024

VERILOG HDL & PROGRAMMABLE LOGIC DEVICES

[Maximum Marks : 75]

PART-A

I. Answer **all** the following questions in one word or sentence. Each question carries 1 mark.

		(9x1=9 mark	
		Module Outcome	Cognitive level
1	Define identifiers in Verilog.	M1.01	R
2	Mention any two lexical conventions.	M1.03	R
3	is a low-level abstraction that describes design in terms of	M2.03	R
	gates.		
4	`include "my_file.v" and `define WIDTH 8 are examples for	M1.03	R
5	The continuous assignment that is used to drive net data type	M2.05	R
	variables is thestatement.		
6	is the highest level of abstraction in Verilog modeling.	M3.01	R
7	Write one difference between initial and always block in Verilog.	M3.01	U
8	List any two applications of PAL.	M4.01	R
9	FPGA provides(more/less) logic resources and storage	M4.05	U
	elements than CPLD.		

PART B

II. Answer **any Eight** questions from the following. Each question carries 3 marks.

		(8x3=24	marks)
		Module Outcome	Cognitive level
1	Define System tasks with an example.	M1.02	R
2	Define Compiler directives.	M1.03	R
3	Design the logic circuit given below using Gate level modeling	M2.03	А
4	Explain the architecture of a basic Verilog HDL Testbench with a block diagram.	M1.03	U
5	Write the syntax of for loop statement in Verilog with an example.	M3.04	R
6	List any 3 applications of FPGA.	M4.03	R
7	Draw CPLD architecture and mention the components.	M4.02	U
8	Differentiate between FPGA and CPLD.	M4.05	U
9	Compare PLA with PAL.	M4.01	U
10	List the components of Verilog module.	M1.04	R

PART C

Answer **all** questions from the following. Each question carries 7 marks.

(6x7=42marks)

		Module Outcome	Cognitive level
III	Explain the Design Flow of HDL.	M1.01	U
	OR		
IV	Explain the two Design methodologies of HDL.	M1.02	U
V	Design gate level modeling of the following circuit given below:	M2.03	Α
	$\begin{array}{c} A_0 \\ A_1 \\ \hline \\ $		
	OR		
VI	Write Verilog HDL description for full adder using Data flow modeling.	M2.08	А
VII	Explain the three ways of specifying delays in continuous assignment statements with examples. OR	M2.06	U
VIII	Write Data flow modeling of 4:1 MUX in Verilog.	M2.08	Α
IX	Explain about procedural assignments in behavioral modelling.	M3.02	U
X	OR Design full subtractor using behavioral modeling with the following inputs and outputs.	M3.05	А
	A → Full Subtractor → D (Difference) B → B _{out} (Borrow) B _{in}		
	$D = A \bigoplus B \bigoplus_{in} B_{out} = \overline{A} B + (\overline{A} + B) B_{in}$		

XI	Explain Event timing control in Verilog.				M3.01	U		
	OR							
XII	Write the Verilog HDL description of D flip flop in behavioral modelling.						M3.04	A
	Table of truth:							
	Symbol	clk	D	٩	ā			
		Q	0	Q	ā			
		Ø	1	Q	α			
		1	0	0	1			
		1	1	1	Ó			
XIII	Explain PAL architecture with diagram.					M4.01	U	
	OR							
XIV	Explain FPGA architecture with the help of a diagram.					M4.03	U	
